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Abstract— As the capabilities, range of missions, and the size
of robot teams increase, the ability for a human operator to
account for all the factors in these complex scenarios can become
exceedingly difficult. Our previous research has studied the
use of case-based reasoning (CBR) tools to assist a user in
the generation of multi-robot missions. These tools, however,
typically assume that the robots available for the mission are
of the same type (i.e., homogeneous). We loosen this assumption
through the integration of contract-net protocol (CNP) based
task allocation coupled with a CBR-based mission specification
wizard. Two alternative designs are explored for combining case-
based mission specification and CNP-based team allocation as
well as the tradeoffs that result from the selection of one of these
approaches over the other.

I. INTRODUCTION

Two challenges in fielding teams of mobile robots lie in
determining the steps a robot should follow when executing
a task (mission specification) and determining which robot
should execute a given task (task allocation). Mission spec-
ification can be a time-consuming and complex process for
users experienced in mission design, let alone for those not
intimately familiar with the domain. In the case of multi-robot
missions, the difficulty of mission specification is compounded
as the process must be repeated multiple times, increasing the
possibility for error in the design and increasing design time.
For heterogeneous teams (i.e., robots that have significantly
differing capabilities such as different sensor packages and/or
different terrain capabilities such as aerial versus ground
versus undersea unmanned vehicles), allocating the available
robots to the appropriate tasks places an additional burden
upon the operator. Task allocation becomes increasingly diffi-
cult as the number of robots increases or if the capabilities of
the robots are not known accurately by the operator.

A. Mission Specification

Mission specification, as described in this work, is the
process in which step-by-step instructions are generated to
guide one or more robots to accomplish a set of tasks. An
example of a mission generated for a multi-robot team may

be reconnaissance of an unknown area. Such a mission is com-
posed of many separate tasks. In this case, tasks may include
patrolling a particular area or tracking targets discovered in
the area. These tasks can be further broken down into the
individual actions or behaviors that must be undertaken to
achieve them. In order to fully specify a mission, therefore,
one must detail: (1) the tasks to undertake; (2) the way to
perform the tasks; and (3) any temporal constraints that may
exist between the tasks or behaviors (i.e., the requirement of
finding a target before tracking it).

One method in which mission specification has been con-
ducted in the past has been through traditional programming,
where an expert explicitly programs the robots to perform the
tasks in the proper order using languages such as C or LISP.
Many systems attempt to automate the mission specification
process through the use of planners [1][2]. These approaches,
however, often result in mission plans that are difficult for a
human operator to customize, reuse, or inspect. An alternative
to these approaches is to present the user with a graphical mis-
sion specification interface with which reusable components
at the action, task, or even mission level can be combined or
modified to create the desired mission. MissionLab [3] is one
such toolset used for multi-robot mission specification, while
similar tools exist in other domains (e.g., [4]).

B. Multi-robot Task Allocation

Once a mission has been decomposed into its requisite
tasks, the question of which robot should be responsible for
executing each particular task still remains. Many techniques
for multi-robot task allocation (MRTA) have been examined.
Prior work includes approaches utilizing teammate modeling
[5], distributed constraint matching [1], and others [6]. Gerkey
and Matarić [7], in particular, provide a thorough review of
several MRTA frameworks.

MRTA is often framed as an optimization problem in which
some performance metric is minimized or maximized given
a set of tasks and a set of available robots. In the most
general case, generating the optimal mapping is NP-Hard [8].
For many applications, however, the ordering of tasks, the
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availability of robots, and the suitability of a robot for a
particular task are not known. Because of this, recent research
has investigated various market-based approaches to team
allocation with significant success [9][10].

In market-based task allocation, a series of task proposals
corresponding to the tasks available to be allocated are gen-
erated and submitted to all available robots. Each proposal
contains information pertaining to the type of task to be
executed. The available team members accept or reject each
proposal. If the proposal is accepted by a robot, it also submits
a bid for that proposal. This bid provides a self-estimate of
how suitable that robot is to perform the task described in the
proposal. After a specified period of time, the task proposer
evaluates all the submitted bids, and awards one or more of the
bidders the contract. Once the contract has been awarded, the
winning robots are now responsible for that task. This process
is continued until all tasks have been contracted out.

Market-based MRTA provides several advantages over other
mechanisms for task allocation. For instance, market-based
MRTA does not rely on a priori knowledge of tasks, task
ordering, or robot availability to allocate robots. Because of
this, it is highly robust to unanticipated failures and uncertainty
in the environment. While the market-based MRTA does
not guarantee optimal allocation of robots to tasks when
task ordering is known a priori, it does provide provable
bounds on this optimal allocation. In addition, some market-
based task allocation techniques are guaranteed to produce
optimal allocations when task ordering information and robot
reassignment is not available [7].

C. CBR Mission Specification and CNP Task Allocation

This work addresses the complexity of these two tasks
by examining multiple ways by which mission specification
in the form of a case-based reasoning (CBR) planner can
be integrated with contract net protocol (CNP) based task
allocation. We examine two alternative designs in which
to combine these two tools within the MissionLab mission
specification toolkit [11]. In the first design discussed, mission
specification and task allocation are linked together during the
process of mission generation. In the second design, mission
specification instead assists creating structures that support
task allocation while the mission is executing. Both approaches
afford different strengths and weaknesses in terms of usability,
design, and scalability.

II. MISSION SPECIFICATION USING MISSIONLAB

MissionLab is a robotic software toolset that allows a
user to compose and execute a multi-robot mission through
its graphical user interface [3]. In MissionLab, a mission
is described with a graphical representation called an FSA
(finite state acceptor) [12]. In the FSA representation, actions
(behaviors) are denoted with circles while perceptual triggers
(conditions for executing the next action) are denoted with
arrows (Figure 1). MissionLab is designed in such a way that
the user specifies a mission FSA by assembling behaviors and
triggers according to the mission’s requirements. The benefits

Fig. 1. EOD Mission represented via FSA.

of specifying a robot mission using FSAs over conventional
programming methods have been reported in [13]. Once the
FSA-based mission is composed, MissionLab translates it into
C++ code and compiles this code into robot executable files.

A. The CBR Wizard

The CBR Wizard is a software mechanism integrated into
MissionLab to support high-level user assistance during mis-
sion specification [14] as well as to guide users in the the
process of repairing faulty missions [15]. The CBR Wizard
allows the user to specify the mission by retrieving a previous
mission from a case library (Figure 2) instead of directly
composing a mission with FSAs. Once the user has chosen
the various constraints of the mission, the CBR Wizard passes
this information to the CBR planner for mission specification.

Cases are designed and tested by experts using the graphical
editing tool in MissionLab (CfgEdit). When the expert has
generated an exemplar mission, the FSA-based mission code
and indexes for the mission are sent to CBRServer, where it
is saved in the case library.

The process of retrieving a case from the case library is
accomplished by case-based reasoning [16]. More specifically,
in order to retrieve a mission, the user specifies constraints and
preferences for the desired mission through a map-based in-
terface. These constraints and preferences are used as indexes
to collect appropriate cases previously stored by the expert
(Figure 3). The cases retrieved from the case library may not
exactly match the criteria specified by the user. To handle
discrepancies between the retrieved task and the constraints
input by the user, the CBR Wizard may adapt the retrieved
cases to better match the desired mission. For example, if the
previous case only dealt with a mission involving a single
robot while the current scenario involves two robots, the
solution can be duplicated (i.e. be accommodated to the two-
robot mission).

A CBR planner is used for mission specification within
this work in lieu of other alternatives for three reasons. By
using a CBR planner to aid in mission specification, the user
is able to capitalize on libraries of pre-generated, correctly



Fig. 2. Overview of mission specification using the CBR Wizard. A user
specifies the desired tasks using the map-based interface of MissionLab.
CBRServer retrieves a mission based on the user’s input. The mission is
presented for user inspection, modification, and execution.
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Fig. 3. Case retrieval process: After specifying the constraints and preferences
of the tasks for the mission, they are used to retrieve relevant cases from
the case library (memory manager). These retrieved cases are adapted and
presented to the user for inspection or modification.

specified, and successful missions to serve as the basis for
future missions. In addition, by reusing portions of successful
mission plans, the cognitive and computational costs of using
a CBR mission specification system can be significantly lower
than when generating the entire mission by hand or through
other planning methods. Finally, faulty domain knowledge by
a novice user can be less of a problem when using missions
pre-generated by human experts.

III. CONTRACT-NET PROTOCOL BASED TASK

ALLOCATION

The contract-net protocol (CNP) [17] is a distributed nego-
tiation algorithm based on the contract metaphor and often
serves as the core negotiation mechanism of market-based
MRTA approaches [18][19]. The implementation of the CNP
protocol used for MRTA within this work is based upon the
Foundation for Intelligent Physical Agents’ specifcation [20].

In CNP negotiation, calls for proposals are sent to available
resources. These resources in turn accept or reject the pro-
posal. If the proposal is accepted, the resources submit bids
indicating their ability to serve the request. In the context
of multi-robot task allocation, CNP is utilized to generate
mappings between the offers, in this case the tasks required to
accomplish the mission, and the available robotic resources.
More specifically, the call for proposals takes the form of
a description of a task that needs to be executed as well
as any information pertinent to the execution of that task.
The robots (bidders) who listen to the request can reply with
bids indicating their perceived suitability for completing the
task described in the request. The highest bidder(s) are then
assigned to execute the task by the initiator. Figure 4 provides
a high-level overview of the CNP negotiation process.

For example, suppose that the objective of a mission is to
monitor the activity of an enemy vehicle in close proximity.
First, the initiator generates a call for proposals based on the
description of this tracking task. The description may include
the information about the enemy vehicle such as its vehicle
type, position, or velocity, etc. The robots participating in this
auction use this task description to decide if they accept or
reject the proposal. If the robots accept, they use the task
description as well as knowledge of their own state to calculate
a bid for the task. A robot may refuse the proposal if it finds the
task infeasible (e.g., an unmanned underwater vehicle cannot
track a ground vehicle). When the auction period is expired,
the initiator awards the task (contract) to the robot(s) that
submitted the highest bid. The winning robot(s) then executes
the tracking task until either: 1) the task is successfully
completed; 2) the robot determines that completion of the
task is no longer possible; or 3) either the initiator or bidder
requests a reallocation of the task. In the second and third
case, the executing robot will renege on the task (cancel its
contract) and the initiator then attempts to reallocate the task
among the remaining robots.

Contract reneging takes place any time a robot is unable
to or finds it infeasible to continue the task. Such an event
could be the result of a mechanical failure or the discovery of
new robotic assets in the mission area. When a robot reneges
its contract, it informs the task initiator that it is canceling
its contract and provides a reason in the form of the list of
constraints required to continue the task. The initiator then re-
injects the reneged task with the provided constraints for all
the remaining robots. The auction process then procedes as
normal.

IV. INTEGRATING CBR AND CNP

This section discusses two alternative designs for integrat-
ing CBR-based mission specification with CNP-based task
allocation (Figure 5). In the first design, CNP provides a
robot-to-task mapping during the CBR Wizard’s case retrieval
process. In the second design, the tasks are assigned by
CNP during the execution of the mission. In this design, the
CBR Wizard retrieves mission plans that support this runtime
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task allocation. The design details of both architectures are
discussed below.

A. CBR and Premission-CNP Integration

In the CBR and premission-CNP architecture, both CBR
and CNP are used during the mission specification process
(Figure 6). Using this architecture, the mission specification
process proceeds along the following steps:

1) The user specifies global mission parameters.
2) The user selects the tasks that compose the mission and

the task constraints.
3) The data concerning the available robots and desired

tasks are sent to the CBR planner.
4) The tasks are allocated to the robots via CNP within the

CBR planner.
5) The task specifications are retrieved from the CBR

planner.
6) The retrieved task specifications are adapted and as-

signed to the proper robot.
7) The resulting allocations and mission plan are presented

to the user for inspection, modification, and execution.

The specification of global mission parameters and tasks
takes place using the map-based interface of MissionLab
shown in figure 7. The global parameters adjust specific

variables that affect all robots. An example of such a global
variable is MaxVelocity shown in the interface in figure 7. This
particular variable scales the maximum speed with which the
team members execute their mission plans.

Once the global parameters have been selected, the user
selects the component tasks for the mission using the map-
based interface. The tasks used in this work include: mine
removal, target interception, target tracking, target observation,
etc. After selecting a task the user then places the task icon at
the approximate location on the map where they believe the
task will need to be performed. A dialog is then presented to
the user with which they may specify any constraints that may
be necessary for the execution of that task. For example, the
user may want a tracking task to be performed in a stealthy
manner. Such constraints for each task are selected in the task
preference dialog. This process is repeated for each task that
will compose the mission.

Once the user specifies all the tasks and constraints using the
interface, this information (e.g. Figure 8) is sent to the CBR
planner (CBRServer) along with data concerning the robots
that are available for the mission (e.g. Figure 9). The CBR
planner uses this data to initiate a series of task allocation
auctions using CNP. For each task input by the user, it initiates
one auction. The call for proposals details the task that must
be performed as well as the constraints the user provided
about the task (location, stealthiness, mobility preferences,
etc). Each of the available robots calculates their fitness for
performing the task up for auction via the CNP negotiation
process described in section III. Each available robot provides
a bid b where 0 ≤ b ≤ 1. A bid of 0 indicates the robot
rejects the proposal. After a short period of time has passed,
the task is assigned to the robot that offered the highest bid.
If no robot offers a bid greater than 0, then task allocation
fails. This process continues until failure or a one-to-one
mapping between robots and tasks has been established. If
failure occurs, the user is alerted and given the option to either
modify the mission or make more robots available for the
mission.

The bid calculation process is performed largely via con-
straint matching (similar to that used by Le Pape [1] to
generate mappings between robots and generated plans). This
process compares the specified task constraints with the robot’s
hardware constraints to determine its suitability for the task.
The use of CNP in the premission system, however, allows
for assignment decisions to be made beyond that of binary
constraint matching. By including heuristics to evaluate bids
based on additional factors such as proximity to the task or
fuel consumption, the mappings have the potential to increase
mission performace through more accurate allocation.

After all the tasks have been assigned to the appropriate
robots, the CBR planner uses this mapping to assemble and
adapt the task specification for each robot as necessary. To
retrieve the appropriate task specification, the CBR planner
searches its case library using the task descriptions input by
the user. The case library is stored as a decision tree, with
each branch in the tree representing the various constraints that
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Fig. 7. The user interface for the CBR + premission-CNP design: Tasks
available for placement on the left. Adjustable global parameters appear in
the upper-right window. Individual task preferences are displayed and adjusted
by clicking on the task location.

make up the stored cases (Figure 10). At the leaf nodes of this
decision tree, the individual cases generated previously by the
expert are stored. The CBR planner retrieves the mission plan
that most closely resembles the user’s request from the case
library (based on locality within the discrimination tree) and
performs adaptation on it. In this case, adaptation consists of
modifying the deployment waypoint for the task to match the
user’s input. The adapted task specification is then matched
with the robot that won the contract to execute that task. This
process repeats for each task within the mission.

Once all task specifications have been retrieved, adapted,
and assigned to the appropriate robot, the resulting mission
plan is visually presented to the user. This mission plan is in
the form of the FSA-based specification used within Mission-
Lab. This final mission plan will contain a one-to-one mapping
between robots and FSA-based task specifications. This final
mission plan may then be inspected, possibly modified, or the
execution rehearsed within the graphical editing environment
and mlab console prior to downloading to the actual robots.
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Fig. 8. Example of task constraints specified by the user and sent to the
CBRServer.

robot-constraints 1 2 "robot1"
robot-constraint 0 0.00 4 0 "VEHICLE_TYPES"
option 0 "UAV"
option 1 "USV"
option 2 "UUV"
option 3 "UGV"
robot-constraint 1 1.00 2 0 "STEALTHINESS"
option 0 "STEALTHY"
option 1 "NOT_STEALTHY"

robot-constraints 2 2 "robot2"
robot-constraint 0 2.00 4 0 "VEHICLE_TYPES"
option 0 "UAV"
option 1 "USV"
option 2 "UUV"
option 3 "UGV"
robot-constraint 1 0.00 2 0 "STEALTHINESS"
option 0 "STEALTHY"
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robot-constraints 3 2 "robot3"
robot-constraint 0 3.00 4 0 "VEHICLE_TYPES"
option 0 "UAV"
option 1 "USV"
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option 3 "UGV"
robot-constraint 1 0.00 2 0 "STEALTHINESS"
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Fig. 9. Example of constraints used to specify robots’ capabilities.

B. CBR and Runtime-CNP Integration

For the design discussed in the previous section, the task
allocation process occurs prior to mission execution (premis-
sion phase). In the second CBR-CNP design, task allocation
is delayed until mission execution. The CBR planner’s role in
this architecture is to produce mission plans that support this
runtime allocation of tasks.

Mission specification within the CBR and runtime-CNP
system follows a series of six steps:

1) The user specifies global mission parameters.
2) The user selects the robots for use within the mission

along with their deployment points.
3) The global parameters and robot selections are sent to

the CBR planner.
4) The robots’ mission specifications are retrieved from the

CBR planner.
5) The retrieved mission specifications are adapted to form

the complete mission specification for each robot.
6) The resulting allocations and mission plan is presented

to the user for inspection, modification, and execution.

As in the case of the CBR and premission-CNP design,
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the user interacts with the mission specification system via
a map-based interface (Figure 11). The user adjusts global
mission parameters such as team aggressiveness in a manner
similar to the premission system. In addition, however, the
user also selects the type of mission the runtime system will
be performing. Examples of mission types supported by the
system include naval mine countermeasure missions and vessel
interception missions.

After the global parameters have been selected the user
then selects deployment points for the robots that will be used
within this mission. Once a deployment point is selected, the
user chooses which of the available robots they wish to be
deployed at that point. This process is repeated until all robots
that will participate in the mission have had their deployment
locations specified.

Once this is done, the data concerning the global parameters
and selected robots are then sent to the CBR planner for mis-
sion retrieval. Unlike the CBR and premission-CNP system,
however, the runtime system does not perform task allocation
upon case retrieval. It instead retrieves a mission plan for each
robot that implements runtime CNP-based task allocation such
as shown in figure 12. The mission plans retrieved from the
CBR planner’s case memory are adapted via the augmentation
with the selected deployment waypoints. The resulting FSA
mission plans for each robot are identical (except for the
deployment behavior) to each other regardless of the mission
type. This FSA configuration provides the behaviors necessary
to participate in the CNP task allocation process and to execute
any tasks assigned to the robot. The CNP ExecuteWonTask
behavior within this FSA serves as a behavioral assemblage
which implements the execution of any of the possible tasks
that the robot can undertake.

In addition, each robot participating in the mission has
a series of behaviors that monitor its progress during task
execution. If the robot detects that it is unable to continue the
mission or significant changes such as a hardware malfunction
occur, the robot reneges its contract for the task. This results
in the task allocation process reoccurring. Such a behavior acts
to ensure that the appropriate robot performs the task even in

Fig. 11. The user interface for the CBR and runtime-CNP integration design:
Robot selection dialog is shown on the right side of the screen.

highly dynamic environments.
In addition to these FSA, the CBR planner retrieves one final

mission plan based on the mission-type that the user selected
earlier. This mission plan is for a notional command and
control vehicle and is responsible for monitoring the progress
of the overall mission. It does this through the generation of
a call for proposals when the appropriate conditions are met
during mission execution (e.g. an enemy vessel is located). The
lead robot generates the call for proposals outlining the new
task to be accomplished (e.g. tracking the enemy vessel) and
then uses this call for proposals to initiate the CNP negotiation
process with the other robots deployed in the mission area. An
example mission plan for the command and control vehicle
participating in a naval mine countermeasure mission can be
seen in figure 13

The key interactions between the command and control
robot and the other deployed robots can be seen in figure 14.
In this figure, the lead robot is labeled as robot 0 and its main
responsibility lies in looking for additional tasks to inject into
the system and monitoring the process of executing tasks. The
deployed robots’ (1...n) responsibility, on the otherhand, lies in
waiting for tasks to become available, bidding on these tasks,
executing tasks, and reporting progress to the command and
control vehicle.

After these mission plans have been retrieved and adapted,
they are presented to the user for inspection, possible modifi-
cation, and execution. It is during mission execution, however,
that task allocation takes place in the CBR and runtime-CNP
system.

To further illustrate the runtime allocation process a vessel
interception mission is described. The goal of this mission
is to intercept a naval vessel departing from an arbitrary
port location. In this mission, the leader robot is a notional
command and control vehicle (UAV) flying at high altitude.
This command and control vehicle observes the activity of
the target vessel and tracks its location and speed. The other
robots participating in the mission standby at their deployment
positions as specified by the user during mission specification.
When the target vessel gets sufficiently close to the expected



Fig. 12. FSA generated for a bidder robot. Behaviors within in it are in
support of runtime task allocation.

Fig. 13. FSA generated for leader robot. Its behaviors are largely for
observing environmental state and injecting tasks based on that state.

interception area, the leader robot creates a call for proposals
detailing the interception and passes it to the CNP initiator.
The CNP initiator then broadcasts this call for proposals and
handles the resulting CNP negotiation process (described in
section III) with the deployed robots. The deployed robots
calculate their bids based on enemy proximity, velocity, etc.
Once the CNP negotiation process has been completed, the
robot submitting the highest bid is assigned the task. The lead
robot continues to monitor the mission area for additional tasks
or mission completion.

The use of CNP in this design is similar to that used by
Gerkey and Matarić’s allocation system MURDOCH [21] [22].
The major difference between the task allocation systems lies
in our use of contract reneging in the CBR and runtime-CNP
design. This allows both the task initiator and task executor
to monitor and initiate the reassignment of tasks at anytime.

C. Design Comparison

While both designs use a common set of techniques to
perform mission specification and task allocation, the point
at which the integration occurs results in differing capabil-
ities, strengths, and weaknesses. The CBR and premission-
CNP design’s major strength lies in its ability to aid the
user during the mission specification process. Through the
retrieval and adaptation of previously stored missions, the CBR
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Fig. 14. Architectural framework of the execution phase for the CBR and
runtime-CNP design

Wizard reduces the need for the user to create complex FSA
representations of the mission by hand. The task allocation
in this design further eliminates the burden of generating a
task-to-robot mapping manually. In addition, using CBR and
CNP in this manner allows the user to inspect and fine-tune
the resulting mission plan prior to execution if necessary.
Finally, the premission design affords preliminary verification
concerning the completion of the mission given the available
resources. All of these components support the design of
complex missions by less sophisticated human operators.

The CBR and premission-CNP design is not without dis-
advantages, however. In this design the task assignment for
each robot is fixed after mission creation. This may force a
mission to be aborted if a robot performing a vital task fails, as
dynamic reassignment is not supported. In addition, this design
does not permit additional tasks to be injected opportunisti-
cally while the mission is executing, limiting its effectiveness
in highly dynamic scenarios. Finally, the premission system
requires a level of user knowledge concerning the mission
itself to be effective. The more accurate the user’s knowledge
regarding the tasks to be performed and their location, the
more effective the task allocation process will be. Conversely,
a user with inaccurate information concerning the tasks or
locations will result in overall poorer mission performance.

Unlike the premission design, the CBR runtime-CNP system
delays task allocation until mission execution commences.
This delay provides a number of capabilities not present in
the premission design. Dynamic addition of tasks at runtime is
supported directly. In addition, through contract reneging, the
team can react to failures or environmental changes without
compromising the mission’s success. Knowledge concerning
the tasks to be performed and their location is also minimized
as the task allocation process provides the robot-to-task map-
ping at runtime.

The two major weaknesses inherent in the CBR runtime-
CNP design are in part due to its dynamic nature. The first is its
inability to provide premission verification of the achievability
of a mission. Without additional information concerning the



tasks composing the mission, no guarantees can be given that
the available robots can accomplish the tasks. In addition, the
runtime design requires relatively frequent amounts of com-
munication throughout the mission. In adverse communication
environments, mission performance may degrade as robots are
unable to receive offers or provide status updates.

V. EVALUATION

The architectures outlined here were evaluated from two
perspectives. The CBR and premission-CNP system was eval-
uated via a usability analysis while the CBR and runtime-
CNP system’s performace was evaluated empirically. Due to
space constraints we can not include the detailed results in this
paper but encourage readers to refer to the appropriate sources
for discussion of the results. A brief summary of the results
follow:

We performed a formal Goals, Operators, and Method,
and Selection rules (GOMS)[23] analysis of the CBR and
premission-CNP system along with the base mission specifi-
cation system. The results of this analysis show that the CBR
and premission-CNP system results in mission creation times
significantly lower then that of the base system, especially as
the number of robots and tasks increase [24].

Our empirical evaluation of the CBR and runtime-CNP
system examines the effect of the CNP allocation over a variety
of metrics in naval mine countermeasure missions as well as
target intercept missions. In addition, a series of experiments
in which the CBR and runtime-CNP system is compared
against a system in which the ability to dynamically reallocate
resources has been lesioned is examined. Results indicate the
CBR and runtime-CNP perform significantly better over a
number of mission metrics when compared to the baseline
systems [25].

VI. CONCLUSIONS AND FUTURE WORK

This work presented two different approaches for combining
case-based reasoning mission specification with a contract net
protocol-based task allocation system. In the first, a CBR
planner aids in the generation of complex plans based on task-
level input from the user. A CNP-based task allocation system
then automatically generates mappings from the the available
robots to the tasks during mission specification. The CBR
planner then retrieves and adapts similar cases to generate
mission plans for accomplishing the tasks.

In the second approach, the CBR planner provides mission
FSAs encapsulating behaviors for participating in CNP-based
task allocation as well as the steps for accomplishing these
tasks. It is shown that this design allows for the generation
of missions in which user knowledge requirements are mini-
mized.

Future work will investigate a third possibility for integra-
tion of CBR-based mission specification and CNP-based task
allocation. In this third design, task allocation occurs during
the CBR Wizard’s case generation and storage. This future
investigation will study how the premission and runtime sys-
tems may interoperate to allow for the creation of increasingly
sophisticated multi-robot missions.
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